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A B S T R A C T

Introduction: Tryptophan, its downstream metabolites in the kynurenine pathway and neopterin have been as-
sociated with inflammation and dementia. We aimed to study the associations between plasma levels of these
metabolites and cognitive function in community-dwelling, older adults.
Methods: This cross-sectional study included 2174 participants aged 70–72 years of the community-based
Hordaland Health Study. Tryptophan, kynurenine, neopterin and eight downstream kynurenines were measured
in plasma. Kendrick Object Learning Test (KOLT), Digit Symbol Test (DST) and the Controlled Oral Word
Association Test (COWAT) were all outcomes in standardized Zellner’s regression. The Wald test of a composite
linear hypothesis of an association with each metabolite was adjusted by the Bonferroni method. Age, body mass
index, C-reactive protein, depressive symptoms, diabetes, education, glomerular filtration rate, hypertension,
previous myocardial infarction, prior stroke, pyridoxal 5′phosphate, sex and smoking were considered as po-
tential confounders.
Results: Higher levels of the kynurenine-to-tryptophan ratio (KTR) and neopterin were significantly associated
with poorer, overall cognitive performance (p < 0.002). Specifically, KTR was negatively associated with KOLT
(β −0.08, p = 0.001) and COWAT (β −0.08, p = 0.001), but not with DST (β −0.03, p = 0.160). This pattern
was also seen for neopterin (KOLT: β −0.07; p = 0.001; COWAT: β −0.06, p = 0.010; DST: β −0.01,
p = 0.800). The associations were not confounded by the examined variables. No significant associations were
found between the eight downstream kynurenines and cognition.
Conclusion: Higher KTR and neopterin levels, biomarkers of cellular immune activation, were associated with
reduced cognitive performance, implying an association between the innate immune system, memory, and
language.

1. Introduction

Tryptophan (TRP), an essential amino acid, is degraded primarily
through the kynurenine pathway (KP, Fig. 1) which generates meta-
bolites collectively referred to as the kynurenines (Chen and Guillemin,

2009). TRP and the kynurenines have been related to cognitive im-
pairment (Baran et al., 1999), cardiovascular disease (Sulo et al., 2013;
Zuo et al., 2016), renal function (Theofylaktopoulou et al., 2013), in-
flammation, obesity, diabetes and psychiatric disorders (Cervenka
et al., 2017). However, a relationship between the kynurenines and
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cognitive function in a community-dwelling cohort has not been es-
tablished.

Reduced levels of circulating TRP and several kynurenines have
been found in persons with dementia compared to controls (Giil et al.,
2017), while elevated levels of anthranilic acid (AA), a derivative of
kynurenine (KYN), has been linked to dementia in a prospective study
(Chouraki et al., 2017). In cognitively healthy persons, elevated levels
of inflammatory mediators are linked to poor cognitive performance
(Smith et al., 2012). The kynurenines are closely linked to the innate
immune system and have immune regulatory actions (Hwu et al.,
2000). During an inflammatory state, cytokines stimulate the activity
and expression of indoleamine 2, 3-dioxygenase (IDO), which converts
TRP to KYN, mostly in monocytes. This leads to reduced TRP and an
increase in downstream kynurenines, especially KYN (Capuron et al.,
2011). The most important activator of IDO is interferon-γ (IFN-γ),
which also activates GTP-cyclohydrolase I (GTP-CH), the rate-limiting
enzyme in the biosynthesis of neopterin, which is a pteridine produced
by monocytes during inflammation (Wirleitner et al., 2002). Increased
levels of neopterin have been linked to dementia (Parker et al., 2013).

IDO is also expressed in the brain and may have importance in the
relationship between systemic inflammation and cognitive impairment
(Comim et al., 2017). Inflammation activates IDO and may increase
levels of neurotoxic kynurenine metabolites in the brain with potential
harmful effects on the hippocampus (Lim et al., 2013; Schwarcz and
Kohler, 1983). Further, TRP and KYN pass the blood-brain barrier (BBB)
(Fukui et al., 1991; Smith et al., 1987) and are key substrates for the
brain’s synthesis of serotonin and kynurenines (Chen and Guillemin,
2009).

Our aim was to study the relationship between circulating levels of
TRP, kynurenines, and neopterin with cognitive test performance in a
community-based cohort of adults aged 70–72 years, The Hordaland
Health Study (HUSK).

2. Methods

2.1. Study participants

Study participants were included from HUSK, conducted in
Hordaland County, Western Norway (http://husk-en.w.uib.no). Details
of the recruitment procedures in both the main study and the cognitive
sub-study have been described previously (Nurk et al., 2007). Briefly,

from the source cohort, 2841 participants born in 1925–27, living in
Bergen and three surrounding municipalities, were invited by letter to
participate in HUSK during 1997 to 1999. Of these, 2197 participants
(77.3%) were included in the sub-study on cognitive function and of
these, 2174 had available blood samples and were included in the
present study. The presence of disease was not an exclusion criterion in
this population-based cohort. The self-reported prevalence of hy-
pertension was 32.8%, previous myocardial infarction 10.6%, diabetes
6.7%, and prior stroke 4.7% (Table 1). The Regional Committee for
Medical and Health Research Ethics approved the study protocol (REC
number: 2016/2208) and all participants provided signed informed
consent.

2.2. Measurement of metabolites

Non-fasting blood samples were collected at baseline, and aliquots
of EDTA plasma samples were stored at −80 ◦C until analysis. TRP,
eight kynurenines (KYN, AA, kynurenic acid (KA), 3-hydro-
xykynurenine (HK), 3-hydroxyanthranilic acid (HAA), xanthurenic acid
(XA), picolinic acid (PIC), quinolinic acid (QA)), pyridoxal 5′ phosphate
(PLP), neopterin and cotinine were measured using liquid chromato-
graphy-tandem mass spectrometry (Midttun et al., 2009). In general,
the kynurenine metabolites remain stable under long-term cryopre-
servation. TRP, KYN, KA, XA, PIC and QA remain stable. Under non-
optimal preanalytical handling or storage, HK and HAA may decrease,
while AA may increase (Hustad et al., 2012). However, all these three
markers were within their normal concentration range in our study
(Midttun et al., 2017). The ratio between kynurenine and tryptophan
was calculated as KYN (µM)/TRP (µM) * 100. The limit of detection was
0.4 µmol/L for TRP, while for neopterin and the kynurenines, limits of
detection ranged from 0.5 nmol/L to 7 nmol/L. Within-day and be-
tween-day coefficients of variation were 3.0–9.5% and 5.7–16.9%, re-
spectively.

Plasma high-sensitivity C-reactive protein (CRP) level was de-
termined using an immune-MALDI (matrix-assisted laser desorption/
ionization) mass spectrometry method (Meyer and Ueland, 2014). For
CRP, the limit of detection was 0.2 µg/L, and within-day and between-
day coefficients of variation were 5.5–8.4% and 7.0–11.7%, respec-
tively. All biochemical analyses were performed in the laboratory of
Bevital AS (http://bevital.no).

Fig. 1. The kynurenine pathway. TDO and IDO
converts tryptophan to kynurenine. HK is converted
to 3-hydroxyanthranilic acid (HAA) by kynureninase
(KYNU), and subsequently to quinolinic acid (QA),
catalyzed by quinolinate phosphoribosyl transferase.
QA is converted to nicotinamide adenosine dinu-
cleotide (NAD), the final product of the pathway.
Anthranilic acid is produced from KYN by KYNU.
Kynurenine aminotransferases (KATs) generate KA
from KYN and xanthurenic acid (XA) from HK.
Picolinic acid is produced by spontaneous conver-
sion of HAA. Both KYNU and KATs have pyridoxal
5′-phosphate (PLP) as a cofactor (Chen and
Guillemin, 2009). HAA, 3-hydroxyanthranilic acid;
HK, 3-hydroxykynurenine; 3-HAO, 3-hydro-
xyanthranilic acid 3, 4-dioxygenase; IDO, in-
doleamine 2, 3-dioxygenase; KATs, kynurenine
aminotransferases; KMO, kynurenine mono-
oxygenase; KTR, kynurenine-tryptophan ratio;
NAD+, nicotine adenine dinucleotide; Spont, spon-
taneous; TDO, tryptophan 2, 3-dioxygenase.
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2.3. Testing of cognitive function

We identified ceiling effects in both a brief version of the Mini-
Mental Status Examination and Block-Design (supplementary materials,
Figure S1). This implies that the true level of cognitive function has not
been accurately measured in the participants who reached the ceiling
effects. Further, the Trail Making Test A displayed a log-normal dis-
tribution with a bimodal trend. These cognitive tests were therefore
considered unsuitable as measurements of cognitive function.

The following normally distributed tests, which indicates an ap-
propriate difficulty level with a centralized mean, were selected to
describe cognitive function: Kendrick Object Learning Test (KOLT), the
Controlled Oral Word Association Test (COWAT), and the Digit Symbol
Test (DST) (Nurk et al., 2007). Briefly, KOLT measures immediate recall
and requires participants to observe picture charts, before telling the
examiner what they observed (Kendrick, 1985). DST evaluates execu-
tive function and is performed by completing a coding table that

consists of the numbers 1–9 and symbols. Participants are instructed to
fill in blank squares with the symbol that is paired with the digit dis-
played above the square (Wechsler, 1981). Lastly, COWAT encourages
participants to write as many words as possible beginning with a given
letter in 60 s and is considered a measure of language, memory, and
executive function (Benton A, 1989). Thus, the cognitive domains of
memory, language, and executive function were examined in this study.

2.4. Potential confounders

Age, gender and educational attainment (Ngandu et al., 2007) were
adjusted for. Cardiovascular disease (Zuo et al., 2016), diabetes (Stone
and Darlington, 2002) and stroke (Darlington et al., 2007) have been
associated with both kynurenines and cognitive performance (Biessels
et al., 2008; Stampfer, 2006; Tatemichi et al., 1994). Similarly, a high
body mass index (BMI) is associated with higher levels of kynurenines
(Mangge et al., 2014) and poor cognition (Cournot et al., 2006). PLP is
a coenzyme in the kynurenine pathway and associated with in-
flammation and cognitive function (Kennedy, 2016). Renal function
determines kynurenine levels (Pawlak et al., 2002) and poor renal
function is associated with cognitive dysfunction (Seliger et al., 2004).
The same applies to smoking (Anstey et al., 2007). Thus, estimated
glomerular filtration rate (Modification of Diet in Renal Disease equa-
tion) (Levey et al., 2006) and current smoking (plasma coti-
nine ≥ 10 nmol/L) were adjusted for in our analyses (Seccareccia et al.,
2003).

Kynurenine levels are higher in major depression and TRP levels is
lower (Myint et al., 2007). Furthermore, depression is associated with
poor cognitive performance (Biringer et al., 2005). We aimed to es-
tablish whether kynurenines were associated with depressive symptoms
in this population-based sample. To this purpose, we applied the Hos-
pital Anxiety and Depression Scale (HADS) and defined a score of ≥8 as
an indicator of mild depressive symptoms, in accordance with Stern
et al. (Stern, 2014). HADS questionnaires with one or two missing an-
swers on the items examining depressive symptoms were imputed as
the mode of the other answers (N = 122). A total of 234 participants
who underwent cognitive testing did not answer the HADS ques-
tionnaire. To further characterize if TRP and kynurenines were related
to depressive symptoms in this study, we used antidepressant agents as
a surrogate marker. Anti-depressive medications were categorized ac-
cording to the 1997 ATC-classification system and included all agents
under N06A (selective serotonin reuptake inhibitors, tricyclic and tet-
racyclic antidepressants) and NX5 (selective norepinephrine reuptake
inhibitors). Further, we investigated if the use of non-steroidal anti-
inflammatory drugs (NSAIDs) were associated with kynurenine levels.
If so, these would be included in the multivariate models. NSAIDs were
defined by the 1997 ATC-registry groups M01A and N02B.

Finally, CRP is of special interest, as it is one of the most frequent
measures of inflammation reported as a negative determinant of cog-
nitive performance. Innate immune activation is expected to increase
both CRP levels, and the levels of several kynurenines downstream of
TRP (Kuo et al., 2005; Zuo et al., 2016). We thus evaluated associations
between TRP, kynurenines and CRP, and adjusted any significant
findings for CRP levels.

2.5. Statistics

Prior to multivariable analysis, metabolites were transformed ac-
cording to Tukey’s ladder of Powers (Tukey, 1977). The purpose was to
linearize relationships by achieving approximately normal distribu-
tions, as assessed by histograms and quantile-quantile plots. KYN was
transformed by an inverse transformation, QA and KTR as the inverse of
the square root and KA, XA, PIC, the KA/QA ratio, PLP and neopterin by
log transformations. CRP was transformed by a Box-Cox transformation
(Box and Cox, 1964). To compare effect sizes across the scales that
arose from the use of transformations, all continuous covariates and

Table 1
Demographic and clinical characteristics.

Variable Statistic
Demographics and general health

Age, years, median [range] 71 [70–72]
Women, % 55.2
Education, %

< 7 years of Primary School 7.3
7–10 years of Primary School 31.6
1–2 years of High School 30.2
3 years of High School 11.9
College/University 19.0

Diabetes, % 6.7
Current smokinga, % 17.8
eGFR, mL/min/1.73 m2, mean [SD] 71.7 [15.7]
BMI, mean [SD] 26.1 [3.9]
Hypertension, % 32.8
Stroke, % 4.7
MI, % 10.6
Depressive symptoms, % 8.8
Antidepressantsb, % 4.3
NSAIDsc, % 5.9
Cognitive test scores

KOLT score, mean [SD] 35 [8.1]
COWAT score, mean [SD] 15 [5.5]
DST score mean [SD] 10 [4.2]
Metabolite levels

TRP, µmol/L, median [IQR] 67.8 [17.5]
KYN, µmol/L, median [IQR] 1.72 [0.50]
KA, nmol/L, median [IQR] 54.8 [25.2]
AA, nmol/L, median [IQR] 16.0 [7.20]
XA, nmol/L, median [IQR] 16.4 [10.0]
HK, nmol/L, median [IQR] 36.1 [15.5]
HAA, nmol/L, median [IQR] 35.0 [17.0]
PIC, nmol/L, median [IQR] 49.4 [28.1]
QA, nmol/L, median [IQR] 462 [2 2 6]
Neopt, nmol/L, median [IQR] 8.70 [3.30]
PLP, nmol/L, median [IQR] 49.1 [44.5]
KTR, µmol/L/ µmol/L*100, median [IQR] 2.50 [0.70]
KA/QA, nmol/L/nmol/l*100, median [IQR] 11.87 [5.55]

a Plasma cotinine level ≥ 10 nmol/l.
b ATC-classification system, NX5 and N06A: selective serotonin and nor-

epinephrine reuptake inhibitors. Tricyclic and tetracyclic antidepressants.
c ATC-registry groups M01A and N02B. AA, anthranilic acid; BMI, body mass

index; COWAT, Controlled Oral Word Association Test; DST, Digit Symbol Test;
eGFR, estimated glomerular filtration rate; HAA, 3-hydroxyanthranilic acid;
HK, 3-hydroxykynurenine; IQR, inter-quartile range; KA, kynurenic acid; KA/
QA, kynurenic acid-quinolinic acid ratio; KOLT, Kendrick Object Learning test;
KTR, kynurenine-tryptophan ratio; KYN, kynurenine; MI, previous myocardial
infarction; Neopt, neopterin; NSAIDs, non-steroidal anti-inflammatory drugs;
PIC, piconilic acid; PLP, pyridoxal 5′phosphate; QA, quinolinic acid; TRP,
tryptophan; XA, xanthurenic acid.
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outcomes were scaled to z-scores. Logistic- and linear regressions were
used to determine associations between potential confounders, kynur-
enines and outcomes.

The cognitive tests were positively correlated (supplementary ma-
terials, Figure S2) and potentially not independent outcome variables.
We first identified a highly significant Breusch-Pagan test (Breusch and
Pagan, 1979), which indicates correlated residuals from separate linear
regressions. Therefore, we decided to assess the associations between
all cognitive tests and each metabolite by Zellner’s seemingly unrelated
regression (SUR), which estimates a set of m linear regressions with
correlated error terms (Jahanshad et al., 2015). We used the two-step
estimation procedure. After initial analysis with age, gender, body mass
index, education (in years), GFR, current smoking, diabetes, previous
myocardial infarction, prior stroke and PLP, additional confounders
associated with TRP, kynurenines or neopterin, were adjusted.

It is impractical to formulate a hypothesis about which exact cog-
nitive test is related to which metabolite. Therefore, we tested the joint
significance of the association between each metabolite and “cogni-
tion”, represented by the three cognitive outcomes in SUR. In order to
test the joint significance, we applied the Wald test on a composite
linear hypothesis (Cameron, 2009), composed of the three hypotheses
of association between the metabolite and the three cognitive tests. The
joint significance (α = 0.05) threshold was adjusted for the number of
hypotheses tested, according to the Bonferroni method (Chen et al.,
2017). All statistical analyses were conducted using Stata (version 15,
Stata Corp, College Station, Texas, USA).

3. Results

3.1. Participant characteristics

A total of 2174 participants (55.2% women), aged 70–72 years with
cognitive tests and available blood samples are included in the analysis.
The mean scores and standard deviations (SD) of KOLT, DST, and
COWAT were 35 (SD: 8.1), 10 (SD: 4.2) and 15 (SD: 5.5), respectively.
KOLT, DST, and COWAT were approximately normally distributed
within the population (supplementary materials, Figure S2). Nineteen
percent of the study participants went to college or university (Table 1).
There were no major differences in the plasma concentrations of ky-
nurenines between the subgroups completing cognitive testing and the
HADS questionnaire.

3.2. Kynurenines and cognitive performance

KTR and neopterin were significantly inversely associated with
cognitive performance measured by KOLT (memory) and COWAT
(language) (Fig. 2), while no such associations were seen with DST
(executive function) (Table 2). KTR showed the strongest association
with cognitive performance (Table 2). Further, PLP was significantly
associated with DST (β 0.069, p = 0.001), but did not act as a con-
founder.

3.3. Kynurenines and potential confounders

3.3.1. Depressive symptoms and antidepressant agents
TRP, KTR, the kynurenines, the KA/QA ratio and neopterin were not

associated with depressive symptoms or antidepressant agents
(Table 3). Thus, depression was not considered as a potential con-
founder for the relationship between kynurenines and cognition.

3.3.2. Non-steroidal anti-inflammatory drugs
Six percent of the participants reported use of NSAIDs (Table 1).

NSAIDs showed an association with TRP, KYN and KTR (Table 3), but
did not confound our results (Table 4).

3.3.3. C-reactive protein
CRP was associated with KYN, HK, HAA, QA, KTR, the KA/QA ratio

and neopterin (Table 3). After adjusting the SUR model for CRP, it did
not act as a confounder (Table 4).

4. Discussion

We studied cognition in relation to neopterin, tryptophan, and the
kynurenines in a community sample of older adults and found that
elevated levels of both KTR and neopterin were associated with lower
performance in the cognitive domains of memory and language. KTR
showed the strongest association.

Our study included 2174 persons (55.2% women) aged 70–72 years
recruited from a population of home-dwelling older adults. In com-
parison, other studies that have investigated the relationship between
the kynurenines, neopterin and cognitive function, have been based on
small patient groups with specific diseases. Higher levels of neopterin
and kynurenines were related to lower cognitive performance post-

Fig. 2. Cognitive tests and markers of immune ac-
tivation. Predicted results from Zellner’s regression,
adjusted for age, sex, body mass index, educational
level, estimated glomerular filtration rate, current
smoking, diabetes, hypertension, previous myo-
cardial infarction, prior stroke, and pyridoxal 5′
phosphate as covariates. COWAT, Controlled Oral
Word Association Test; KOLT, Kendrick Object
Learning Test; KTR, kynurenine-tryptophan ratio.
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operatively amongst patients who had undergone cardiac bypass sur-
gery (N = 28, mean age of 60.2 years, 11% women), and major non-
cardiac thoracic surgery (N = 28, mean age of 67.6 years, 32% women)
(Forrest et al., 2011). Additionally, a study of patients with stage IV
renal failure (N = 27, mean age of 76.4 years, 33% women), suggested
that rising levels of neopterin and KYN were associated with lower
cognitive performance (Karu et al., 2016). Further, neopterin was as-
sociated with progression of cognitive deficits in patients with Alzhei-
mer’s disease (Blasko et al., 2007; Leblhuber et al., 1999). Previous
studies have shown that acute TRP depletion may impair episodic
memory, and suggest a role of the serotonergic system in cognitive
function (Mendelsohn et al., 2009). Our results support that the ky-
nurenine pathway may be relevant for cognitive function.

There is evidence of an association between peripheral pro-in-
flammatory mediators, such as tumor necrosis factor-α, Il-6, and CRP,
and reduced cognitive performance in healthy humans (Economos
et al., 2013; Schram et al., 2007; Teunissen et al., 2003; Wichmann
et al., 2014; Yaffe et al., 2003). Therefore, the kynurenines could rather
be indirect markers of their underlying activators, which are mainly
related to inflammation. We did not identify confounding from CRP in
our data, but a more comprehensive assessment of inflammation would
have been informative.

In this study, nine percent of the participants had depressive
symptoms (HADS score > = 8), but we found no association with TRP
or kynurenine levels. Although an association between kynurenines and
major depression has been described, our study is not comparable and
does not generalize to major depressive disorder. First, HADS is not a
diagnostic test of depression (Cosco et al., 2012; Myint et al., 2007).
Second, patients with major depression are less likely to participate as
study volunteers (Hughes-Morley et al., 2015). Finally, participants
with depressive symptoms and patients using antidepressants likely
represent a heterogeneous group, as antidepressant agents have broad
indications, for example for treating anxiety and sleeping disturbances
in the elderly (Noordam et al., 2015). Here, depressive symptoms were
mainly of interest as potential confounders.

PLP, the active form of vitamin B6, was associated with DST but did
not act as a confounder in our study. Our findings are in line with
studies indicating both a detrimental effect on cognition from PLP de-
ficiency. Vitamin B6 is actively transported over the BBB and is a rate-
limiting cofactor in the synthesis of neurotransmitters such as dopamine
and serotonin (Kennedy, 2016). Circulating PLP levels are lower in
individuals with inflammation compared to healthy subjects (Ueland
et al., 2017), and has been proposed to contribute to cognitive decline
(Kennedy, 2016). Intervention studies administering vitamin B6

Table 2
Cognitive performance and individual metabolites (N = 2174).a

KOLT COWAT DST Wald testd

Memory Language Executive function

Association of each metabolite with three cognitive tests

β SE p β SE p β SE p X2 pc

TRP 0.047 0.022 0.03 0.043 0.022 0.05 0.050 0.021 0.02 9.2 0.027
KYNb -0.021 0.024 0.4 -0.030 0.024 0.2 0.026 0.023 0.3 4.6 0.2
KYN2b -0.061 0.021 0.003 -0.021 0.020 0.3 -0.044 0.020 0.03 11.3 0.01*
KA 0.022 0.026 0.4 -0.011 0.025 0.7 0.034 0.024 0.2 3.1 0.38
AA 0.003 0.022 0.9 0.014 0.021 0.5 0.003 0.021 0.9 0.42 0.94
XA 0.049 0.023 0.03 0.024 0.023 0.3 0.047 0.022 0.03 7.3 0.06
HK -0.002 0.242 0.9 -0.009 0.024 0.7 0.026 0.023 0.3 1.8 0.6
HAA 0.032 0.023 0.2 0.013 0.023 0.6 0.043 0.022 0.05 4.7 0.2
PIC 0.031 0.022 0.2 0.005 0.021 0.2 0.005 0.021 0.8 2.0 0.6
QA -0.007 0.024 0.8 -0.050 0.024 0.04 0.034 0.023 0.1 9.0 0.03
KTR -0.084 0.024 0.001 -0.077 0.024 0.001 -0.032 0.023 0.16 17.7 < 0.001*
Neopt -0.074 0.023 0.001 -0.056 0.022 0.01 -0.007 0.022 0.8 14.6 0.002*
KA/QA 0.022 0.021 0.3 0.028 0.021 0.2 -0.003 0.021 0.9 2.8 0.43
Association between KTR and three cognitive tests, with covariates

β SE p β SE p β SE p X2 p

Age
71 -0.024 0.050 0.6 0.072 0.049 0.1 -0.040 0.048 0.4 4.3 0.2
72 -0.050 0.050 0.3 0.072 0.049 0.1 -0.062 0.048 0.2 6.8 0.1

Female 0.408 0.044 < 0.001 0.072 0.043 0.1 0.085 0.042 0.05 85.6 < 0.001
GFR -0.061 0.024 0.01 -0.067 0.024 0.005 -0.033 0.023 0.2 11.5 0.01
Edu 0.150 0.022 < 0.001 0.340 0.022 < 0.001 0.402 0.021 < 0.001 486.7 < 0.001
Smoke -0.021 0.050 0.7 -0.016 0.049 0.8 -0.061 0.048 0.2 1.8 0.6
Dia -0.103 0.086 0.2 -0.206 0.084 0.01 -0.090 0.082 0.3 6.8 0.08
BMI -0.001 0.006 0.8 -0.005 0.005 0.4 0.001 0.005 0.8 0.92 0.8
HT -0.045 0.046 0.3 -0.014 0.045 0.8 -0.049 0.044 0.3 1.5 0.7
MI -0.123 0.069 0.07 -0.051 0.067 0.4 -0.022 0.066 0.7 3.4 0.3
Stroke -0.246 0.098 0.01 -0.208 0.097 0.03 -0.091 0.095 0.3 8.7 0.03
PLP -0.003 0.022 0.9 0.032 0.021 0.1 0.069 0.021 0.001 13.1 0.005
KTR -0.084 0.024 0.001 -0.077 0.024 0.001 -0.032 0.023 0.16 17.7 < 0.001*

a Zellner’s seemingly unrelated regression, estimated for each metabolite with age, BMI, dia, edu, GFR, MI, sex, smoking, hypertension, MI, stroke and PLP as
covariates.

b The association between KOLT and KYN was non-linear. A second degree orthogonal polynomial gave a good fit.
c The significance threshold for 12 tests is 0.0042, according to the Bonferroni method, indicated by *.
d Test of the joint significance of the association between each metabolite and three cognitive outcomes. AA, anthranilic acid; BMI, body mass index; COWAT,

Controlled Oral Word Association Test; Dia, diabetes; DST, Digit Symbol Test; Edu, education; GFR, glomerular filtration rate; HAA, 3-hydroxyanthranilic acid; HK, 3-
hydroxykynurenine; HT, hypertension; KA, kynurenic acid; KA/QA, kynurenic acid-quinolinic acid ratio; KOLT, Kendrick Object Learning Test; KYN, kynurenine;
KYN2, 2nd degree orthogonal polynomial of KYN; KTR, kynurenine-tryptophan ratio; MI, previous myocardial infarction; Neopt, neopterin; p, p-value; PIC, picolinic
acid; PLP, pyridoxal 5′phosphate; QA, quinolinic acid; SE, standard error; Smoker, current smoking; Stroke, prior stroke; TRP, tryptophan; X2, chi-squared; XA,
xanthurenic acid; β, standardized regression coefficient.
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supplementation for age-related memory decline has shown some en-
couraging trends (Deijen et al., 1992). However, given the involvement
of PLP in a wide range of biological processes, it remains to be de-
termined if PLP plays an active role in cognitive performance.

Our rationale for using the KTR was that it provides a better mea-
sure of IDO activity than the individual metabolites, particularly when
KTR correlates with inflammatory markers, such as neopterin
(Schrocksnadel et al., 2006). The rate-limiting enzymes in kynurenine
and neopterin biosynthesis, IDO and GTP-CH respectively, are both
induced by IFN-γ. The absence of IFN-γ is associated with improve-
ments in neurogenesis, synaptic plasticity, and performance in hippo-
campus-dependent tasks in mice (Monteiro et al., 2016). Experimental
studies have implicated IDO in inflammation-associated cognitive dys-
function (Chen and Guillemin, 2009; Comim et al., 2017; Heisler and
O'Connor, 2015; Yu et al., 2015).

Experimental studies support a neuroexcitatory role of QA in the
brain, and a neuroprotective role of KA. The hippocampus has been
reported to be particularly susceptible to the neurotoxic effects of QA
(Schwarcz and Kohler, 1983). KA, on the other hand, is considered

neuroprotective (Leib et al., 1996). We did not find evidence to support
that the ratio between these metabolites (KA/QA) in peripheral blood
was related to cognitive function. However, QA and KA cross the BBB
poorly (Fukui et al., 1991), and therefore measurement in the cere-
brospinal fluid will be needed to settle this issue.

An important question in studies such as ours is to what extent, if
any, peripheral inflammation relates to neuroinflammation. Blood-
borne cytokines can enter the brain by transport systems at the BBB
(Varatharaj and Galea, 2017) and immune cells enter the brain under
physiological conditions, though at a much lower rate than in other
organs (Takeshita and Ransohoff, 2012). TRP and KYN are themselves
transported to the brain and are precursors of both brain serotonin
(Young and Leyton, 2002) and kynurenines (Chen and Guillemin,
2009). In microglia, KYN is a precursor for QA, which could activate the
N-methyl-D-aspartate receptor (NMDAR) (Ganong and Cotman, 1986).
Thus, high plasma KTR may be related to cognitive function as a marker
of inflammation, serotonin depletion and NMDAR activation in the
brain, but this must be investigated in future studies.

Strengths of this study include a large sample size of 2174 persons, a

Table 3
Evaluating potential confounders. Association with exposure a.

Depressive symptoms b Anti-depressants b NSAIDs b C-reactive protein c

OR p OR p OR p β p

TRP 1.01 0.9 0.91 0.4 0.65 < 0.001 -0.02 0.3
KYN 0.94 0.5 1.16 0.3 0.74 0.003 0.19 < 0.001
KA 0.88 0.2 0.89 0.4 0.96 0.7 0.04 0.2
AA 0.89 0.2 0.98 0.9 1.2 0.1 0.06 0.003
XA 0.93 0.4 0.80 0.1 0.93 0.4 -0.04 0.05
HK 1.10 0.3 1.06 0.7 1.00 0.9 0.17 < 0.001
HAA 0.97 0.7 1.11 0.4 0.93 0.5 0.15 < 0.001
PIC 0.98 0.8 0.87 0.2 1.02 0.9 -0.02 0.3
QA 0.98 0.8 1.07 0.6 1.02 0.82 0.24 < 0.001
KTR 0.94 0.5 1.27 0.1 1.29 0.01 1.21 < 0.001
Neopt 1.09 0.3 1.20 0.1 1.03 0.74 0.18 < 0.001
KA/QA 0.94 0.4 0.88 0.3 0.95 0.6 -0.15 < 0.001

Note. 252/2869 had depressive symptoms, 141/3319 used anti-depressants, and 196/3319 used NSAIDs.
a All models adjusted for age, body mass index, current smoking, diabetes, educational level, glomerular filtration rate, hypertension, previous myocardial

infarction, prior stroke, pyridoxal 5′ phosphate and sex.
b Logistic regression.
c Linear regression. AA, anthranilic acid; HAA, hydroxyanthranilic acid; HK, hydroxykynurenine; KA, kynurenic acid; KA/QA, kynurenic acid-quinonilic acid ratio;

KTR, kynurenine-tryptophan ratio; KYN, kynurenine; Neopt, neopterin; OR, odds ratio; p, p-value; PIC, picolinic acid; QA, quinonilic acid; TRP, tryptophan; X2, chi-
squared; XA, xanthurenic acid; β, standardized regression coefficient.

Table 4
Cognitive performance and individual metabolites. Adjusted models (N = 2174).a

KOLT COWAT DST Wald testb

Memory Language Executive function

Model 1: Unadjusted model

β SE p β SE p β SE p X2 P

KTR -0.084 0.024 0.001 -0.077 0.024 0.001 -0.032 0.023 0.2 17.7 < 0.001
Neopt -0.074 0.023 0.001 -0.056 0.022 0.01 -0.007 0.022 0.8 14.6 0.002
Model 2: Adjustment for C-reactive protein

KTR -0.078 0.025 0.002 -0.081 0.025 0.001 -0.040 0.024 0.1 16.1 0.001
Neopt -0.071 0.024 0.003 -0.052 0.023 0.02 -0.011 0.022 0.6 11.7 0.008
Model 3: Adjustment for non-steroidal anti-inflammatory drugs

KTR -0.082 0.024 0.001 -0.079 0.024 0.001 -0.032 0.023 0.2 17.8 < 0.001
Neopt -0.074 0.022 0.001 -0.055 0.022 0.01 -0.007 0.022 0.7 14.5 0.002

Note. 196 out of 3319 participants used non-steroidal anti-inflammatory drugs.
a Zellner’s seemingly unrelated regression, estimated for each metabolite with age, sex, body mass index, educational level, glomerular filtration rate, current

smoking, diabetes, hypertension, previous myocardial infarction, prior stroke, pyridoxal 5′ phosphate as covariates and either CRP (Model 2) or NSAIDs (Model 3).
b Test of the joint significance of association between each metabolite and all three cognitive outcomes. Neopt, neopterin; KTR, kynurenine-tryptophan ratio; p, p-

value; SE, standard error; X2, chi-squared; β, standardized regression coefficient.
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relatively high response rate among the participants, and similar age of
the participants (70–72 years), which limits the impact of age itself on
metabolites and cognition. The main limitations are the constraints of
cross-sectional studies. This involves difficulties in ascertaining the di-
rection of associations between predictors and outcomes and the po-
tential for unmeasured confounders. Cognitive domains are not mu-
tually exclusive, which can make interpretation challenging (Malek-
Ahmadi et al., 2011). Further, non-fasting blood samples is a limitation,
and measurements of the kynurenines in the cerebrospinal fluid would
have been informative. Longitudinal studies are needed to further de-
lineate these associations.

In summary, we found that KTR and neopterin, biomarkers of cel-
lular immune activation, were associated with a lower cognitive func-
tion in the domains of memory and language in a sample of community-
dwelling older adults. The findings add support for a role of the innate
immune system in cognitive function.
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